Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.329
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 55, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643118

RESUMO

BACKGROUND: Viral myocarditis (VMC) is a disease resulting from viral infection, which manifests as inflammation of myocardial cells. Until now, the treatment of VMC is still a great challenge for clinicians. Increasing studies indicate the participation of miR-29b-3p in various diseases. According to the transcriptome sequencing analysis, miR-29b-3p was markedly upregulated in the viral myocarditis model. The purpose of this study was to investigate the role of miR-29b-3p in the progression of VMC. METHODS: We used CVB3 to induce primary cardiomyocytes and mice to establish a model of viral myocarditis. The purity of primary cardiomyocytes was identified by immunofluorescence. The cardiac function of mice was detected by Vevo770 imaging system. The area of inflammatory infiltration in heart tissue was shown by hematoxylin and eosin (H&E) staining. The expression of miR-29b-3p and DNMT3A was detected by quantitative real time polymerase chain reaction (qRT-PCR). The expression of a series of pyroptosis-related proteins was detected by western blot. The role of miR-29b-3p/DNMT3A in CVB3-induced pyroptosis of cardiomyocytes was studied in this research. RESULTS: Our data showed that the expression of miR-29b-3p was upregulated in CVB3-induced cardiomyocytes and heart tissues in mice. To explore the function of miR-29b-3p in CVB3-induced VMC, we conducted in vivo experiments by knocking down the expression of miR-29b-3p using antagomir. We then assessed the effects on mice body weight, histopathology changes, myocardial function, and cell pyroptosis in heart tissues. Additionally, we performed gain/loss-of-function experiments in vitro to measure the levels of pyroptosis in primary cardiomyocytes. Through bioinformatic analysis, we identified DNA methyltransferases 3A (DNMT3A) as a potential target gene of miR-29b-3p. Furthermore, we found that the expression of DNMT3A can be modulated by miR-29b-3p during CVB3 infection. CONCLUSIONS: Our results demonstrate a correlation between the expression of DNMT3A and CVB3-induced pyroptosis in cardiomyocytes. These findings unveil a previously unidentified mechanism by which CVB3 induces cardiac injury through the regulation of miR-29b-3p/DNMT3A-mediated pyroptosis.


Assuntos
MicroRNAs , Miocardite , Camundongos , Animais , Miocardite/genética , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/metabolismo , Antagomirs/metabolismo
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 29-39, 2024 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38615163

RESUMO

OBJECTIVES: Trigeminal neuralgia (TN) is a common neuropathic pain. Voltage-gated potassium channel (Kv) has been confirmed to be involved in the occurrence and development of TN, but the specific mechanism is still unclear. MicroRNA may be involved in neuropathic pain by regulating the expression of Kv channels and neuronal excitability in trigeminal ganglion (TG). This study aims to explore the relationship between Kv1.1 and miR-21-5p in TG with a TN model, evaluate whether miR-21-5p has a regulatory effect on Kv1.1, and to provide a new target and experimental basis for the treatment of TN. METHODS: A total of 48 SD rats were randomly divided into 6 groups: 1) a sham group (n=12), the rats were only sutured at the surgical incision without nerve ligation; 2) a sham+agomir NC group (n=6), the sham rats were microinjected with agomir NC through stereotactic brain injection in the surgical side of TG; 3) a sham+miR-21-5p agomir group (n=6), the sham rats were microinjected with miR-21-5p agomir via stereotactic brain injection in the surgical side of TG; 4) a TN group (n=12), a TN rat model was constructed using the chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) method with chromium intestinal thread; 5) a TN+antagonist NC group (n=6), TN rats were microinjected with antagonist NC through stereotactic brain injection method in the surgical side of TG; 6) a TN+miR-21-5p antagonist group (n=6), TN rats were microinjected with miR-21-5p antagonist through stereotactic brain injection in the surgical side of TG. The change of mechanical pain threshold in rats of each group after surgery was detected. The expressions of Kv1.1 and miR-21-5p in the operative TG of rats were detected by Western blotting and real-time reverse transcription polymerase chain reaction. Dual luciferase reporter genes were used to determine whether there was a target relationship between Kv1.1 and miR-21-5p and whether miR-21-5p directly affected the 3'-UTR terminal of KCNA1. The effect of brain stereotaxic injection was evaluated by immunofluorescence assay, and then the analogue of miR-21-5p (agomir) and agomir NC were injected into the TG of rats in the sham group by brain stereotaxic apparatus to overexpress miR-21-5p. The miR-21-5p inhibitor (antagomir) and antagomir NC were injected into TG of rats in the TN group to inhibit the expression of miR-21-5p. The behavioral changes of rats before and after administration were observed, and the expression changes of miR-21-5p and Kv1.1 in TG of rats after intervention were detected. RESULTS: Compared with the baseline pain threshold, the facial mechanical pain threshold of rats in the TN group was significantly decreased from the 5th to 15th day after the surgery (P<0.05), and the facial mechanical pain threshold of rats in the sham group was stable at the normal level, which proved that the dIoN-CCI model was successfully constructed. Compared with the sham group, the expression of Kv1.1 mRNA and protein in TG of the TN group was down-regulated (both P<0.05), and the expression of miR-21-5p was up-regulated (P<0.05). The results of dual luciferase report showed that the luciferase activity of rno-miR-21-5p mimics and KCNA1 WT transfected with 6 nmol/L or 20 nmol/L were significantly decreased compared with those transfected with mimic NC and wild-type KCNA1 WT, respectively (P<0.001). Compared with low dose rno-miR-21-5p mimics (6 nmol/L) co-transfection group, the relative activity of luciferase in the high dose rno-miR-21-5p mimics (20 nmol/L) cotransfection group was significantly decreased (P<0.001). The results of immunofluorescence showed that drugs were accurately injected into TG through stereotaxic brain. After the expression of miR-21-5p in the TN group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were increased. After overexpression of miR-21-5p in the sham group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were decreased. CONCLUSIONS: Both Kv1.1 and miR-21-5p are involved in TN and miR-21-5p can regulate Kv1.1 expression by binding to the 3'-UTR of KCNA1.


Assuntos
Canal de Potássio Kv1.1 , MicroRNAs , Neuralgia , Neuralgia do Trigêmeo , Animais , Ratos , Antagomirs , Regulação para Baixo , Luciferases , MicroRNAs/genética , Neuralgia/genética , Ratos Sprague-Dawley , RNA Mensageiro , Neuralgia do Trigêmeo/genética , Canal de Potássio Kv1.1/genética
3.
Arch Esp Urol ; 77(2): 183-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38583011

RESUMO

PURPOSE: This study aimed to determine the influence of miR-1297 on kidney injury in rats with diabetic nephropathy (DN) and its causal role. METHODS: A DN rat model was established through right kidney resection and intraperitoneal injection of streptozotocin (STZ). Sham rats did not undergo right kidney resection or STZ injection. The DN rats were divided into the DN model and antagomiR-1297 treatment groups. Kidney morphology was observed using hematoxylin and eosin staining. Renal function indices, including blood urea nitrogen (BUN), serum creatinine (SCr), and urinary protein, were measured using kits. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined through enzyme-linked immunosorbent assay (ELISA). Fibrin (FN), collagen type I (Col I), and α-smooth muscle actin (α-SMA) were assessed through western blotting and real-time reverse transcription-polymerase chain reaction. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. miR-1297 targets were predicted using bioinformatic software and verified through luciferase reporter assay. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway expression was analyzed through western blotting. RESULTS: AntagomiR-1297 reduced BUN (p = 0.005), SCr (p = 0.012), and urine protein (p < 0.001) levels and improved kidney tissue morphology. It prevented renal interstitial fibrosis by decreasing FN, Col I, and α-SMA protein levels (all p < 0.001). AntagomiR-1297 increased SOD (p = 0.001) and GSH-Px (p = 0.002) levels. Additionally, it reduced levels of cell inflammatory factors, including TNF-α, IL-6, and IL-1ß (all p < 0.001), and alleviated apoptosis (p < 0.001) in rat kidney tissue with DN. miR-1297 was pinpointed as a target for PTEN. AntagomiR-1297 increased PTEN expression and suppressed PI3K and AKT phosphorylation (all p < 0.001). CONCLUSIONS: AntagomiR-1297 can mitigate renal fibrosis, renal inflammation, apoptosis, and oxidative stress levels through the PTEN/PI3K/AKT pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Antagomirs/metabolismo , Antagomirs/farmacologia , Rim , MicroRNAs/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Diabetes Mellitus/metabolismo
4.
Aging (Albany NY) ; 16: 5336-5353, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466649

RESUMO

Macrophage-driven immune dysfunction of the intestinal mucosa is involved in the pathophysiology of ulcerative colitis (UC). Emerging evidence indicates that there is an elevation in miR-31-5p levels in UC, which is accompanied by a downregulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) expression. Nevertheless, the precise influence of miR-31-5p on macrophage polarization and the integrity of the intestinal epithelial barrier in UC remains to be fully elucidated. This study explored the role of miR-31-5p and AMPK in UC through a bioinformatics investigation. It investigated the potential of miR-31-5p antagomir to shift macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype and enhance the intestinal mucosal barrier in DSS-induced UC mice. Additionally, RAW264.7 cells stimulated with LPS were employed to confirm the reversal of miR-31-5p antagomir's therapeutic effect under AMPK inhibition. The findings demonstrated that miR-31-5p antagomir penetrated colonic tissues and ameliorated DSS-induced experimental colitis. Transformation of spleen and mesenteric lymph node macrophages from M1 to M2 type was seen in the DSS+miR-31-5p antagomir group. AMPK/Sirt1 expression increased while NLRP3 expression decreased. Expression of M2-related genes and proteins was enhanced and that of the M1 phenotype suppressed. Tight junction proteins, ZO-1 and occludin, were increased. The therapeutic effects of miR-31-5p antagomir transfection into RAW264.7 cells were repressed when AMPK expression was inhibited. Therefore, our results suggest that suppression of miR-31-5p expression transformed macrophages from M1 to M2, ameliorated inflammation and repaired the intestinal epithelium to alleviate DSS-induced colitis. AMPK/Sirt1/NLRP3 was involved.


Assuntos
Colite Ulcerativa , Colite , MicroRNAs , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Antagomirs , Colite/induzido quimicamente , Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais , Sirtuína 1/genética
5.
Zhonghua Zhong Liu Za Zhi ; 46(3): 239-248, 2024 Mar 23.
Artigo em Chinês | MEDLINE | ID: mdl-38494770

RESUMO

Objective: To explore the molecular mechanism of circDDX17 regulating the proliferation and apoptosis of non-small cell lung cancer cells by targeting the miR-223-3p/RIP3 molecular axis. Methods: The expression levels of circDDX17, miR-223-3p, and RIP3 in human normal lung epithelial cell lines BEAS-2B and non-small cell lung cancer cells H1299, A549, and H446 were detected by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). The plasmids of pcDNA, pcDNA-circDDX17, anti-miR-con, anti-miR-223-3p, pcDNA-circDDX17 and miR-con, pcDNA-circDDX17 and miR-223-3p mimics were transfected into H1299 cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) assay was used to detect the cell proliferation. Flow cytometry was used to detect the cell cycle and cell apoptosis. Plate cloning experiment was used to detect cell proliferation ability. The dual luciferase report experiment was applied to verify the targeting relationship between miR-223-3p with circDDX17 and RIP3. Western blot was used to detect the protein expression of cyclinD1, CDK2, cleaved caspase-3 and Bax. Results: The expression levels of circDDX17 and RIP3 mRNA in H1299, A549, and H446 cells were significantly reduced (P<0.05), the expression level of miR-223-3p mRNA was significantly increased (P<0.05) compared with BEAS-2B. The cell viability [(69.46±4.68)%], the number of cell clones (83.49±7.86), the proportion of cells in S phase [(22.52±1.41) %], the protein expression levels of cyclinD1 and CDK2 in PCDNa-CircDDX17 group were lower than those in pcDNA group [(97.54±7.72)%, 205.03±13.37, (28.69±1.49)%, respectively, P<0.05], while the percentage of G0/G1 phase cells [(64.45±3.56)%], apoptosis rate [(18.36±1.63)%], the protein expression levels of cleaved caspase-3 and Bax in pcDNA-circDDX17 group were higher than those of pcDNA group [(51.33±2.76) % and (5.21±0.54) %, respectively, P<0.05]. The viability [(72.64±5.44)%], the number of cell clones (78.16±8.23), the proportion of S-stage cells [(21.34±1.59) %], the protein expression levels of CyclinD1 and CDK2 in anti-miR-223-3p group were lower than those in anti-miR-con group [(103.47±6.25)%, 169.32±14.53, (28.43±1.26)%, respectively, P<0.05]. Percentage of G0/G1 phase cells [(62.86±3.28)%], apoptosis rate [(14.64±1.67)%], the protein expression levels of cleaved caspase-3 and Bax in the anti-miR-223-3p group were higher than those of anti-miR-con group [(51.33±2.71)% and (4.83±0.39)%, respectively, P<0.05]. MiR-223-3p has complementary sites with circDDX17 or RIP3. The viability [(135.45±9.28)%], the number of cell clones (174.64±10.68), the proportion of S-phase cells [(26.39±2.25)%], the protein expression levels of cyclinD1 and CDK2 in pcDNA-circDDX17+miR-223-3p group were higher than those in pcDNA-circDDX17+miR-con group [(101.56±6.68)%, 107.65±7.62, (21.64±1.72)%, P<0.05]. Percentage of G0/G1 phase cells [(56.64±2.76)%], apoptosis rate [(8.34±0.76)%], the protein expression levels of cleaved caspase-3 and Bax in pcDNA-circDDX17+miR-223-3p group were lower than those of pcDNA-circDDX17+miR-con group [(64.03±3.48)% and (15.21±1.18)%, respectively, P<0.05]. Conclusion: circDDX17 could inhibit the proliferation and induce apoptosis of non-small cell lung cancer cells via targeting the miR-223-3p / RIP3 molecular axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , MicroRNAs/genética , Caspase 3 , Antagomirs , Proteína X Associada a bcl-2 , Neoplasias Pulmonares/genética , Proliferação de Células/genética , Apoptose/genética , RNA Mensageiro , Linhagem Celular Tumoral
6.
Nanoscale ; 16(12): 6215-6240, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38446130

RESUMO

Using targeted drug delivery systems has emerged as a promising approach to increase the efficacy of chemotherapy, particularly in combination with gene therapy. The overexpression of miR-21 plays a crucial role in colorectal cancer (CRC) progression, and targeted inhibition of miR-21 offers significant potential for enhancing CRC chemotherapy outcomes. In this study, a theranostic system based on mesoporous silica and superparamagnetic iron oxide nanoparticles (SPION@MSNs) was synthesized as a core-shell structure. After loading epirubicin (EPI) in the open pores of MSN, the plasmid expressing anti-miR-21 (pDNA) covered the outer surface with the help of a ZIF-8 (zeolitic imidazolate framework-8) film. Afterward, polyethylene glycol (PEG) and AS1411 aptamer were conjugated to the surface to improve the protective, biocompatibility, and targeting abilities of the nanocarrier. Moreover, the physicochemical characteristics as well as the loading capacity and release profile of EPI and pDNA were fully evaluated. The uptake of the nanoparticles by CRC and normal cell lines in addition to the anticancer effects related to targeted combinational therapy were investigated in vitro. Finally, in vivo tests were performed on BALB/c mice bearing colorectal tumors to evaluate the effectiveness of the targeted nanoparticles, their possible side effects, and also their application in fluorescence and magnetic imaging in vivo. The successful synthesis of SPION@MSN-EPI/pDNA-ZIF-8-PEG-Apt nanoparticles (∼68 nm) and good loading efficiency and controlled release of EPI and pDNA were confirmed. Moreover, hemolysis and gel retardation assays demonstrated the biocompatibility and plasmid protection. Cellular uptake and expression of copGFP illustrated selective entry and transient transfection of targeted nanoparticles, consistent with the cytotoxicity results that indicated the synergistic effects of chemo-gene therapy. The results of animal studies proved the high antitumor efficiency of targeted nanoparticles with minimal tissue damage, which was in line with fluorescence and magnetic imaging results. The novel synthesized nanoparticles containing SPION@MSN-ZIF-8 were suitable for CRC theranostics, and the combined approach of chemo-gene therapy suppressed the tumor more effectively.


Assuntos
Adenocarcinoma , Neoplasias do Colo , MicroRNAs , Nanopartículas , Animais , Camundongos , Epirubicina/farmacologia , Epirubicina/química , Neoplasias do Colo/tratamento farmacológico , Antagomirs , Medicina de Precisão , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polietilenoglicóis/química , Nanopartículas Magnéticas de Óxido de Ferro , Dióxido de Silício/química
7.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516774

RESUMO

Acute liver failure (ALF) is a complex syndrome characterized by overactivation of innate immunity, and the recruitment and differentiation of immune cells at inflammatory sites. The present study aimed to explore the role of microRNA (miRNA/miR)­21 and its potential mechanisms underlying inflammatory responses in ALF. Baseline serum miR­21 was analyzed in patients with ALF and healthy controls. In addition, miR­21 antagomir was injected via the tail vein into C57BL/6 mice, and lipopolysaccharide/D­galactosamine (LPS/GalN) was injected into mice after 48 h. The expression levels of miR­21, Krüppel­like­factor­6 (KLF6), autophagy­related proteins and interleukin (IL)­23, and hepatic pathology were then assessed in the liver tissue. Furthermore, THP­1­derived macrophages were transfected with a miRNA negative control, miR­21 inhibitor, miR­21 mimics or KLF6 overexpression plasmid, followed by treatment with or without rapamycin, and the expression levels of miR­21, KLF6, autophagy­related proteins and IL­23 were evaluated. The results revealed that baseline serum miR­21 levels were significantly upregulated in patients with ALF. In addition, LPS/GalN­induced ALF was attenuated in the antagomir­21 mouse group. KLF6 was identified as a target of miR­21­5p with one putative seed match site identified by TargetScan. A subsequent luciferase activity assay demonstrated a direct interaction between miR­21­5p and the 3'­UTR of KLF6 mRNA. Further experiments suggested that miR­21 promoted the expression of IL­23 via inhibiting KLF6, which regulated autophagy. In conclusion, in the present study, baseline serum miR­21 levels were highly upregulated in patients with ALF, antagomir­21 attenuated LPS/GalN­induced ALF in a mouse model, and miR­21 could promote the expression of IL­23 via inhibiting KLF6.


Assuntos
Falência Hepática Aguda , MicroRNAs , Animais , Humanos , Camundongos , Antagomirs , Autofagia/genética , Proteínas Relacionadas à Autofagia , Interleucina-23/genética , Interleucina-23/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
8.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 607-620, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38414350

RESUMO

Myocardial damage is a critical complication and a significant contributor to mortality in sepsis. MicroRNAs (miRNAs) have emerged as key players in sepsis pathogenesis. In this study, we explore the effect and mechanisms of miR-29b-1-5p on sepsis-induced myocardial damage. Sepsis-associated Gene Expression Omnibus datasets (GSE72380 and GSE29914) are examined for differential miRNAs. The mouse sepsis-induced cardiac injury was established by Lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). LPS-treated HL-1 mouse cardiomyocytes simulate myocardial injury in vitro. miR-29b-1-5p is co-upregulated in both datasets and in cardiac tissue from sepsis mouse and HL-1 cell models. miR-29b-1-5p expression downregulation was achieved by antagomir transduction and confirmed by real-time quantitative reverse transcription PCR. Survival analysis and echocardiography examination show that miR-29b-1-5p inhibition improves mice survival cardiac function in LPS- and CLP-induced sepsis mice. Hematoxylin and eosin and Masson's trichrome staining and Immunohistochemistry analysis of mouse myocardial α-smooth muscle actin show that miR-29b-1-5p inhibition reduces myocardial tissue injury and fibrosis. The inflammatory cytokines and cardiac troponin I (cTnI) levels in mouse serum and HL-1 cells are also decreased by miR-29b-1-5p inhibition, as revealed by enzyme-linked immunosorbent assay. The expressions of autophagy-lysosomal pathway-related and apoptosis-related proteins in the mouse cardiac tissues and HL-1 cells are evaluated by western blot analysis. The sepsis-induced activation of the autophagy-lysosomal pathway and apoptosis are also reversed by miR-29b-1-5p antagomir. MTT and flow cytometry measurement further confirm the protective role of miR-29b-1-5p antagomir in HL-1 cells by increasing cell viability and suppressing cell apoptosis. Metascape functionally enriches TargetScan-predicted miR-29b-1-5p target genes. TargetScan prediction and dual luciferase assay validate the targeting relationship between miR-29b-1-5p and telomeric repeat-binding factor 2 (TERF2). The expression and function of TERF2 in HL-1 cells and mice are also evaluated. MiR-29b-1-5p negatively regulates the target gene TERF2. TERF2 knockdown partly restores miR-29b-1-5p antagomir function in LPS-stimulated HL-1 cells. In summary, miR-29b-1-5p targetedly inhibits TERF2, thereby enhancing sepsis-induced myocardial injury.


Assuntos
MicroRNAs , Sepse , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Antagomirs , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Baixo , Sepse/complicações , Sepse/genética , Sepse/metabolismo
9.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338785

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs). Based on a thorough revision, we classified these molecules into three categories according to their function: osteoclast inhibitors (miR-23a, miR-29b, and miR-214), osteoblast inhibitors (miR-22-3p, miR-26a, miR-27a, miR-29a, miR-125b, and miR-146a), and osteoblast enhancers (miR-20a, miR-34a, miR-96, miR-106a, miR-142, miR-199a, miR-324, and miR-486b). Finally, we analyzed potential therapeutic targets of these exosomal miRNAs, such as the use of antagomiRs, blockmiRs, agomiRs and competitive endogenous RNAs (ceRNAs), which are already being tested in murine and ex vivo models of RA. These strategies might have an important role in reestablishing the regulation of osteoclast and osteoblast differentiation making progress in the development of personalized medicine.


Assuntos
Artrite Reumatoide , MicroRNAs , Humanos , Camundongos , Animais , Osteoclastos/patologia , MicroRNAs/genética , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Osteoblastos/patologia , Macrófagos/patologia , Antagomirs
10.
Eur J Pharm Biopharm ; 197: 114238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417704

RESUMO

Lipid-based nanoparticles are a useful tool for nucleic acids delivery and have been regarded as a promising approach for diverse diseases. However, off-targets effects are a matter of concern and some strategies to improve selectivity of solid lipid nanoparticles (SLNs) were reported. The goal of this study was to test formulations of SLNs incorporating lipid cholesteryl-9-carboxynonanoate (9CCN) as "eat-me" signal to target antagomiR oligonucleotides to macrophages. We formulate four SLNs, and those with a mean diameter of 200 nm and a Z-potential values between 25 and 40 mV, which allowed the antagomiR binding, were selected for in vitro studies. Cell viability, transfection efficiency and cellular uptake assays were performed within in vitro macrophages using flow cytometry and confocal imaging and the SLNs incorporating 25 mg of 9CCN proved to be the best formulation. Subsequently, we used a labeled antagomiR to study tissue distribution in in-vivo ApoE-/- model of atherosclerosis. Using the ApoE-/- model we demonstrated that SLNs with phagocytic signal 9-CCN target macrophages and release the antagomiR cargo in a selective way.


Assuntos
Lipídeos , Lipossomos , Nanopartículas , Antagomirs , Cátions , Macrófagos , Apolipoproteínas E
11.
Sci Rep ; 14(1): 4896, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418830

RESUMO

This work prepared and investigated the impact of carboxymethyl chitosan nanoparticles (MC-NPs) on the proliferative capability of keloid fibroblasts (KFBs) while analyzing the mechanistic roles of miR-214 and adenosine A2A receptor (A2AR) in fibroblasts within hypertrophic scars. MC-NPs were synthesized through ion cross-linking, were characterized using transmission electron microscopy (TEM) and laser particle size scattering. The influence of MC-NPs on the proliferation capacity of KFBs was assessed using the MTT method. Changes in the expression levels of miR-214 and A2AR in KFBs, normal skin fibroblasts (NFBs), hypertrophic scar tissue, and normal skin tissue were analyzed. KFBs were categorized into anti-miR-214, anti-miR-NC, miR-214 mimics, miR-NC, si-A2AR, si-con, anti-miR-214+ si-con, and anti-miR-214+ si-A2AR groups. Bioinformatics target prediction was conducted to explore the interaction between miR-214 and A2AR. Real-time quantitative PCR and immunoblotting (WB) were employed to detect the expression levels of miR-214, A2AR, apoptotic protein Bax, and TGF-ß in different cells. Cell counting kit-8 (CCK8) and flow cytometry were employed to assess cell proliferation activity and apoptosis. The results indicated that MC-NPs exhibited spherical particles with an average diameter of 236.47 ± 4.98 nm. The cell OD value in the MC-NPs group was lower than that in KFBs (P < 0.05). The mRNA levels of miR-214 in KFBs and hypertrophic scar tissue were lower than those in NFBs and normal tissue (P < 0.001), while the mRNA and protein levels of A2AR were significantly elevated (P < 0.05). Compared to the control group and anti-miR-NC, the anti-miR-214 group showed significantly increased cell OD values and Bcl-2 protein expression (P < 0.001), decreased levels of apoptotic gene Bax protein, TGF-ß gene mRNA, and protein expression (P < 0.001). Continuous complementary binding sites were identified between miR-214 and A2AR. Compared to the control group, the si-A2AR group exhibited a significant decrease in A2AR gene mRNA and protein expression levels (P < 0.001), reduced cell viability (P < 0.001), increased apoptosis rate (P < 0.001), and a significant elevation in TGF-ß protein expression (P < 0.001). miR-214 targetedly regulated the expression of A2AR, inducing changes in TGF-ß content, promoting the proliferation of keloid fibroblasts, and inhibiting cell apoptosis.


Assuntos
Quitosana , Cicatriz Hipertrófica , Queloide , MicroRNAs , Humanos , Queloide/patologia , Cicatriz Hipertrófica/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Antagomirs/metabolismo , Quitosana/farmacologia , Quitosana/metabolismo , Proliferação de Células , Fator de Crescimento Transformador beta/metabolismo , Apoptose , MicroRNAs/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/metabolismo
12.
Funct Integr Genomics ; 24(2): 32, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363406

RESUMO

Researchers have reported that miR-124-3p is highly expressed in patients with chronic endometritis. However, the underlying mechanism of miR-124-3p in the development of endometritis remains unclear. This study constructed an in vitro endometrial cell injury model by treating HEECs with 2 µg/mL LPS for 48 h. Then, 1 mg/kg LPS was injected into both sides of the mouse uterus to construct an in vivo endometrial injury model. The expression of miR-124-3p in human endometrial epithelial cells (HEECs) was assessed using RT‒qPCR. Exosomes were separated from bone marrow-derived mesenchymal stem cells (BMSCs) and cocultured with HEECs. A dual-luciferase reporter assay was performed to confirm the relationship between miR-124-3p and DUSP6. The results indicated that LPS inhibited HEEC viability in a time- and dose-dependent manner. The miR-124-3p inhibitor reversed the LPS-induced apoptosis and inhibition of HEEC viability. In addition, miR-124-3p could be transferred from BMSCs to HEECs by exosomes. Exosomes were derived from BMSCs treated with an NC inhibitor (BMSCs/NC Exo) or miR-124-3p inhibitor (BMSCs/anti-miR-124-3p Exo). In addition, BMSCs/anti-miR-124-3p Exo abolished the LPS-induced inhibition of HEEC viability and proliferation by inducing HEEC apoptosis. Moreover, BMSCs/anti-miR-124-3p Exo alleviated the LPS-induced inflammation of HEECs by upregulating DUSP6 and downregulating p-p65 and p-ERK. Furthermore, in an LPS-induced in vivo endometrial injury model, BMSCs/anti-miR-124-3p Exo increased the expression level of DUSP6 and decreased the expression levels of p-p65 and p-ERK. BMSCs/anti-miR-124-3p Exo protected against LPS-induced endometrial damage in vitro and in vivo by upregulating DUSP6 and downregulating p-p65 and p-ERK1/2. This study showed that BMSCs/anti-miR-124-3p Exo might be a potential alternative for the treatment of endometritis.


Assuntos
Endometrite , Exossomos , MicroRNAs , Feminino , Animais , Camundongos , Humanos , Antagomirs , Lipopolissacarídeos/toxicidade , Endometrite/induzido quimicamente , Endometrite/terapia , MicroRNAs/genética
13.
Sci Rep ; 14(1): 2348, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287075

RESUMO

Acacetin, one of the flavonoid compounds, is a natural product found in various plants, including Silver birch, and Damiana. Previous studies showed that acacetin has anti-cancer effects on many kinds of cancer cells, however, the role of and the mechanisms of actions of acacetin on non-small cell lung cancer (NSCLC) cells is still not fully understood. Herein, we found that, in vitro, acacetin inhibited the proliferation, invasion, and migration of NSCLC cells, A549 and H460, in a dose-dependent manner. Meanwhile, flow cytometry assay results showed that acacetin induced G2/M phase cell cycle arrest, and apoptosis of NSCLC cells. In vivo, acacetin suppressed tumor formation of A549-xenografted nude mice model with no obvious toxicities. Western blotting results showed that the protein levels of cell cycle-related proteins cyclin B1, cyclin D, and anti-apoptotic protein Bcl-2 had decreased, while the apoptosis-related protein Bak had increased both in NSCLC cells and in A549-xenografted tumor tissues. For investigating the molecular mechanism behind the biological effects of acacetin on NSCLC, we found that acacetin induced the expression levels of tumor suppressor p53 both in vitro and in vivo. MicroRNA, miR-34a, the direct target of p53, has been shown anti-NSCLC proliferation effects by suppressing the expression of its target gene programmed death ligand 1 (PD-L1). We found that acacetin upregulated the expression levels of miR-34a, and downregulated the expression levels of PD-L1 of NSCLC cells in vitro and of tumors in vivo. In vitro, knockdown p53 expression by siRNAs reversed the induction effects of acacetin on miR34a expression and abolished the inhibitory activity of acacetin on NSCLC cell proliferation. Furthermore, using agomir and antagomir to overexpress and suppress the expression miR-34a in NSCLC cells was also examined. We found that miR-34a agomir showed similar effects as acacetin on A549 cells, while miR-34a antagomir could partially or completely reverse acacetin's effects on A549 cells. In vivo, intratumor injection of miR-34a antagomir could drastically suppress the anti-tumor formation effects of acacetin in A549-xenografted nude mice. Overall, our results showed that acacetin inhibits cell proliferation and induces cell apoptosis of NSCLC cells by regulating miR-34a.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Flavonas , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Camundongos Nus , Antagomirs/farmacologia , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Proliferação de Células , Proteínas de Ciclo Celular/metabolismo , Apoptose/genética , Regulação Neoplásica da Expressão Gênica
14.
J Cell Mol Med ; 28(3): e18074, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186203

RESUMO

We previously found that miR-664a-5p is specifically expressed in urinary exosomes of idiopathic membranous nephropathy (IMN) patients. Homeodomain-interacting protein kinase 2 (HIPK2), a nuclear serine/threonine kinase, plays an important role in nephropathy. But the function of these factors and their connection in MN are unclear. To investigate the function and mechanism of miR-664a-5p in MN, the miR-664a-5p expression in HK-2 cells, exosomes, podocytes and renal tissues were studied, as well as cell growth and apoptosis of these cells, the binding of miR-664a-5p to HIPK2 mRNA, the levels of relative proteins and autophagy. The MN progression in MN mice model was also studied. Albumin increased the miR-664a-5p content and apoptosis of HK-2 cells, which was blocked by miR-664a-5p antagomir. miR-664a-5p bound to the 3' UTR of HIPK2 mRNA, resulting in the up-regulation of Calpain1, GSα shear and the inhibition of autophagy level. Autophagy inhibitor CQ blocked the protective effect of miR-664a-5p antagomir, HIPK2 overexpression, Calpain inhibitor SJA6017 on albumin-mediated injury. MiR-664a-5p from albumin-treated HK-2 cells could be horizontally transported to podocytes through exosomes. Exosomes from albumin-treated HK-2 cells promoted progression of MN mice, AAV-Anti-miR-664-5p (mouse homology miRNA) could improve them. Albumin increases the miR-664a-5p level and causes changes of HIPK2/Calpain1/GSα pathway, which leads to autophagy inhibition and apoptosis up-regulation of renal tubular epithelial cells. miR-664a-5p can horizontally enter podocytes through exosomes resulting in podocytes injury. Targeted inhibition of miR-664a-5p can reduce the apoptosis of renal tubule cells and podocytes, and may improve the MN progression.


Assuntos
Glomerulonefrite Membranosa , MicroRNAs , Animais , Humanos , Camundongos , Albuminas/metabolismo , Antagomirs , Apoptose , Autofagia , Proteínas de Transporte , Glomerulonefrite Membranosa/genética , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro
15.
Signal Transduct Target Ther ; 9(1): 24, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246920

RESUMO

The clinical role and underlying mechanisms of valproic acid (VPA) on bone homeostasis remain controversial. Herein, we confirmed that VPA treatment was associated with decreased bone mass and bone mineral density (BMD) in both patients and mice. This effect was attributed to VPA-induced elevation in osteoclast formation and activity. Through RNA-sequencing, we observed a significant rise in precursor miR-6359 expression in VPA-treated osteoclast precursors in vitro, and further, a marked upregulation of mature miR-6359 (miR-6359) in vivo was demonstrated using quantitative real-time PCR (qRT-PCR) and miR-6359 fluorescent in situ hybridization (miR-6359-FISH). Specifically, the miR-6359 was predominantly increased in osteoclast precursors and macrophages but not in neutrophils, T lymphocytes, monocytes and bone marrow-derived mesenchymal stem cells (BMSCs) following VPA stimulation, which influenced osteoclast differentiation and bone-resorptive activity. Additionally, VPA-induced miR-6359 enrichment in osteoclast precursors enhanced reactive oxygen species (ROS) production by silencing the SIRT3 protein expression, followed by activation of the MAPK signaling pathway, which enhanced osteoclast formation and activity, thereby accelerating bone loss. Currently, there are no medications that can effectively treat VPA-induced bone loss. Therefore, we constructed engineered small extracellular vesicles (E-sEVs) targeting osteoclast precursors in bone and naturally carrying anti-miR-6359 by introducing of EXOmotif (CGGGAGC) in the 3'-end of the anti-miR-6359 sequence. We confirmed that the E-sEVs exhibited decent bone/osteoclast precursor targeting and exerted protective therapeutic effects on VPA-induced bone loss, but not on ovariectomy (OVX) and glucocorticoid-induced osteoporotic models, deepening our understanding of the underlying mechanism and treatment strategies for VPA-induced bone loss.


Assuntos
Vesículas Extracelulares , MicroRNAs , Feminino , Humanos , Animais , Camundongos , Ácido Valproico/farmacologia , Antagomirs , Hibridização in Situ Fluorescente , Vesículas Extracelulares/genética , MicroRNAs/genética
16.
Viruses ; 16(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257797

RESUMO

MicroRNAs (miRNAs) are non-coding RNAs, which, as members of the RNA interference pathway, play a pivotal role in antiviral infection. Almost 80% of plant viruses are transmitted by insect vectors; however, little is known about the interaction of the miRNAs of insect vectors with plant viruses. Here, we took rice black-streaked dwarf virus (RBSDV), a devastating virus to rice production in eastern Asia, and the small brown planthopper, (SBPH, Laodelphax striatellus) as a model to investigate the role of microRNA750-3p (miR750-3p) in regulating viral transmission. Our results showed that Ls-miR750-3p was downregulated in RBSDV-infected SBPH and predominately expressed in the midgut of SBPH. Injection with miR750-3p agomir significantly reduced viral accumulation, and the injection with the miR750-3p inhibitor, antagomir-750-3p, dramatically promoted the viral accumulation in SBPH, as detected using RT-qPCR and Western blotting. The processing of precursor 7 (POP7), a subunit of RNase P and RNase MRP, was screened, identified, and verified using a dual luciferase reporter assay as one target of miR750-3p. Knockdown of POP7 notably increased RBSDV viral propagation in SBPH and then increased the viral transmission rate by SBPH. Taken together, our data indicate that miR750-3p targets POP7 to suppress RBSDV infection in its insect vector. These results enriched the role of POP7 in modulating virus infection in host insects and shared new insight into the function of miRNAs in plant virus and insect vector interaction.


Assuntos
Hemípteros , MicroRNAs , Vírus de Plantas , Animais , Vírus de Plantas/genética , Antagomirs , MicroRNAs/genética
17.
Adv Mater ; 36(6): e2307639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009631

RESUMO

Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed. CuBG scaffolds reduce the attachment of gram-positive bacteria by over 80%, showcasing antimicrobial functionality. The antagomiR-138 nanoparticles induce osteogenesis of human mesenchymal stem cells in vitro and heal a large load-bearing defect in a rat femur when delivered on the scaffold. Combining both promising technologies results in a multifunctional antagomiR-138-activated CuBG scaffold inducing hMSC-mediated osteogenesis and stimulating vasculogenesis in an in vivo chick chorioallantoic membrane model. Overall, this multifunctional scaffold catalyzes killing mechanisms in bacteria while inducing bone repair through osteogenic and angiogenic coupling, making this platform a promising multi-functional strategy for treating and repairing complex bone infections.


Assuntos
MicroRNAs , Nanopartículas , Humanos , Ratos , Animais , Tecidos Suporte , Regeneração Óssea , MicroRNAs/genética , Antagomirs/farmacologia , Osteogênese , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
18.
Int J Biol Macromol ; 254(Pt 1): 127638, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879576

RESUMO

MicroRNAs (miRNAs) play crucial roles in skin pigmentation in animals. Rainbow trout (Oncorhynchus mykiss) is a key economic fish species worldwide, and skin color directly affects its economic value. However, the functions of miRNAs in rainbow trout skin pigmentation remain largely unknown. Herein, we overexpressed and silenced miR-495 in vitro and in vivo to investigate its functions. The analysis of spatial and temporal expression patterns suggested that miR-495 is a potential regulator during the process of skin pigmentation. In vitro, mc1r was validated as a direct target for miR-495 by dual-luciferase reporter assay, and overexpression of miR-495 significantly inhibited mc1r expression; in contrast, mc1r and its downstream gene mitf levels were markedly upregulated by decreased miR-495. In vivo, overexpressed miR-495 by injecting agomiR-495 led to a substantial decrease in the expression of mc1r and mitf in dorsal skin and liver, while the opposite results were obtained after miR-495 silencing by antagomiR-495. These findings suggested that miR-495 can target mc1r to regulate rainbow trout skin pigmentation, which provide a potential basis for using miRNAs as target drugs to treat pigmentation disorders and melanoma.


Assuntos
MicroRNAs , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Pigmentação da Pele/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Antagomirs
19.
Blood ; 143(5): 429-443, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847858

RESUMO

ABSTRACT: Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.


Assuntos
Infecções por Vírus Epstein-Barr , Doença de Hodgkin , Linfoma Difuso de Grandes Células B , MicroRNAs , Humanos , Antagomirs , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Doença de Hodgkin/complicações , Ligantes , Linfoma Difuso de Grandes Células B/metabolismo , MicroRNAs/genética , Proteínas Virais/metabolismo
20.
Arthritis Rheumatol ; 76(1): 18-31, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527031

RESUMO

OBJECTIVE: We previously reported an increased expression of microRNA-155 (miR-155) in the blood monocytes of patients with rheumatoid arthritis (RA) that could be responsible for impaired monocyte polarization to anti-inflammatory M2-like macrophages. In this study, we employed two preclinical models of RA, collagen-induced arthritis and K/BxN serum transfer arthritis, to examine the therapeutic potential of antagomiR-155-5p entrapped within PEGylated (polyethylene glycol [PEG]) liposomes in resolution of arthritis and repolarization of monocytes towards the anti-inflammatory M2 phenotype. METHODS: AntagomiR-155-5p or antagomiR-control were encapsulated in PEG liposomes of 100 nm in size and -10 mV in zeta potential with high antagomiR loading efficiency (above 80%). Mice were injected intravenously with 1.5 nmol/100 µL PEG liposomes containing antagomiR-155-5p or control after the induction of arthritis. RESULTS: We demonstrated the biodistribution of fluorescently tagged PEG liposomes to inflamed joints one hour after the injection of fluorescently tagged PEG liposomes, as well as the liver's subsequent accumulation after 48 hours, indicative of hepatic clearance, in mice with arthritis. The injection of PEG liposomes containing antagomiR-155-5p decreased arthritis score and paw swelling compared with PEG liposomes containing antagomiR-control or the systemic delivery of free antagomiR-155-5p. Moreover, treatment with PEG liposomes containing antagomiR-155-5p led to the restoration of bone marrow monocyte defects in anti-inflammatory macrophage differentiation without any significant functional change in other immune cells, including splenic B and T cells. CONCLUSION: The injection of antagomiR-155-5p encapsulated in PEG liposomes allows the delivery of small RNA to monocytes and macrophages and reduces joint inflammation in murine models of RA, providing a promising strategy in human disease.


Assuntos
Artrite Experimental , Artrite Reumatoide , MicroRNAs , Humanos , Camundongos , Animais , Antagomirs/metabolismo , Antagomirs/uso terapêutico , Lipossomos/metabolismo , Lipossomos/uso terapêutico , Distribuição Tecidual , Macrófagos , Anti-Inflamatórios/uso terapêutico , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...